Note

LEIP supports many additional deep learning models. The models listed below only represent models that are supported for use in LEIP Design (Golden Recipes and Recipe Designer) and contain additional optimization and performance testing.

If you would like to use LEIP with additional models via Bring Your Own Model (BYOM), see Model Preparation and Supported Formats

Future releases will support a greater range of ONNX models, including transformers.

Below is a list of our currently supported models for use in LEIP Design, whether you’re Bringing Your Own Data (BYOD) to use with a Golden Recipe or creating your own recipe.

Classifier Models

LEIP supports most of the pytorchcv and timm models.

Detector Models

LEIP currently supports the following detector model families:

  • EfficientDet
  • YOLOv5
  • YOLOv8
  • SSD
  • NanoDet

Best Performing Detector Backbones

The performance of the supported detector model families was tested extensively and used to generate the Golden Recipe Database (GRDB). More details (target architecture, inference speed, accuracy, etc.) about models that passed LEIP end-to-end testing can be found at the GRDB Explorer.

The following detector backbones were in the top 0.75% of the GRDB by performance (mAP):

Model FamilyBackbone
EfficientDetcspdarkdet53
cspdarkdet53m
cspresdet50
cspresdext50
cspresdext50pan
efficientdet_d0
efficientdet_d1
efficientdet_d5
efficientdet_em
efficientdet_lite0
efficientdet_q0
efficientdet_q1
efficientdet_q2
efficientdetv2_ds
efficientdetv2_dt
resdet50
tf_efficientdet_d0
tf_efficientdet_d0_ap
tf_efficientdet_d1
tf_efficientdet_d1_ap
tf_efficientdet_d2
tf_efficientdet_d2_ap
tf_efficientdet_d3
tf_efficientdet_d3_ap
tf_efficientdet_d4
tf_efficientdet_d4_ap
tf_efficientdet_d5
tf_efficientdet_d5_ap
tf_efficientdet_d6
tf_efficientdet_lite0
tf_efficientdet_lite1
tf_efficientdet_lite2
tf_efficientdet_lite3
tf_efficientdet_lite3x
tf_efficientdet_lite4
Model FamilyBackbone
NanoDetnanodet-efficient-lite0
nanodet-efficient-lite1
nanodet-efficient-lite2
nanodet-m
nanodet-m-1.5x
nanodet-plus-m
nanodet-plus-m-1.5x
Model FamilyBackbone
SSDmb1-ssd
vgg16-ssd
Model FamilyBackbone
YOLOv5yolov5l
yolov5l6
yolov5m
yolov5m6
yolov5n
yolov5n6
yolov5s
yolov5s6
yolov5x
yolov5x6
Model FamilyBackbone
YOLOv8yolov8l
yolov8m
yolov8n
yolov8s
yolov8x
yolov8x6